Algebraic expressions

Objectives

After completing this chapter you should be able to:

- Multiply and divide integer powers
- Expand a single term over brackets and collect like terms
 - → pages 3-4
- Expand the product of two or three expressions
- Factorise linear, quadratic and simple cubic expressions
- Know and use the laws of indices
- Simplify and use the rules of surds
- Rationalise denominators

→ pages 4-6

→ pages 2-3

- → pages 6-9
- → pages 9-11
- → pages 12-13
- → pages 13-16

Computer scientists use indices to describe very large numbers. A quantum computer with 1000 qubits (quantum bits) can consider 21000 values simultaneously. This is greater than the number of particles in the observable universe.

Prior knowledge check

- 1 Simplify:
 - a $4m^2n + 5mn^2 2m^2n + mn^2 3mn^2$
 - **b** $3x^2 5x + 2 + 3x^2 7x 12$
 - ← GCSE Mathematics
- 2 Write as a single power of 2:
 - **a** $2^5 \times 2^3$
- **b** $2^6 \div 2^2$
- c $(2^3)^2$
- ← GCSE Mathematics
- **3** Expand:
 - **a** 3(x+4)
- **b** 5(2-3x)
- c 6(2x-5y)
- ← GCSE Mathematics
- **4** Write down the highest common factor of:
 - a 24 and 16
- **b** 6x and $8x^2$
- c $4xy^2$ and 3xy
- ← GCSE Mathematics
- **5** Simplify:
 - **a** $\frac{10x}{5}$ **b** $\frac{20x}{2}$

← GCSE Mathematics

Index laws

- You can use the laws of indices to simplify powers of the same base.
 - $a^m \times a^n = a^{m+n}$
 - $a^m \div a^n = a^{m-n}$
 - $(a^m)^n = a^{mn}$
 - $(ab)^n = a^n b^n$

Notation

This is the base.

This is the index, power or exponent.

Example

Simplify these expressions:

- **a** $x^2 \times x^5$ **b** $2r^2 \times 3r^3$ **c** $\frac{b^7}{b^4}$ **d** $6x^5 \div 3x^3$ **e** $(a^3)^2 \times 2a^2$ **f** $(3x^2)^3 \div x^4$

d
$$6x^5 \div 3x^3 = \frac{6}{3} \times \frac{x^5}{x^3}$$

$$= 2 \times x^2 = 2x^2$$

$$e (a^3)^2 \times 2a^2 = a^6 \times 2a^2$$

= $2 \times a^6 \times a^2 = 2a^8$

$$f \frac{(3x^2)^3}{x^4} = 3^3 \times \frac{(x^2)^3}{x^4}$$
$$= 27 \times \frac{x^6}{x^4} = 27x^2$$

Use the rule $a^m \times a^n = a^{m+n}$ to simplify the index.

Rewrite the expression with the numbers together and the r terms together.

$$2 \times 3 = 6$$
$$r^2 \times r^3 = r^{2+3}$$

Use the rule $a^m \div a^n = a^{m-n}$ to simplify the index.

$$x^5 \div x^3 = x^{5-3} = x^2$$

Use the rule $(a^m)^n = a^{mn}$ to simplify the index.

$$a^6 \times a^2 = a^{6+2} = a^8$$

Use the rule $(ab)^n = a^n b^n$ to simplify the numerator. $(x^2)^3 = x^{2 \times 3} = x^6$

$$\frac{x^6}{x^4} = x^{6-4} = x^2$$

Example

Expand these expressions and simplify if possible:

a
$$-3x(7x-4)$$

b
$$y^2(3-2y^3)$$

c
$$4x(3x-2x^2+5x^3)$$

c
$$4x(3x-2x^2+5x^3)$$
 d $2x(5x+3)-5(2x+3)$

Watch out A minus sign outside brackets changes the sign of every term inside the brackets.

$$a -3x(7x - 4) = -21x^2 + 12x$$

$$v^{2/3} - 2v^{3} - 3v^{2} - 2v^{5}$$

$$y^2(3-2y^3)=3y^2-2y^5$$

$$c 4x(3x - 2x^2 + 5x^3)$$

= $12x^2 - 8x^3 + 20x^4$

d
$$2x(5x + 3) - 5(2x + 3)$$
 = $10x^2 + 6x - 10x - 15$

$$= 10x^2 - 4x - 15$$

$$-3x \times 7x = -21x^{1+1} = -21x^2$$
$$-3x \times (-4) = +12x$$

$$y^2 \times (-2y^3) = -2y^2 + 3 = -2y^5$$

Remember a minus sign outside the brackets changes the signs within the brackets.

Simplify 6x - 10x to give -4x.

Example

Simplify these expressions:

a
$$\frac{x^7 + x}{x^3}$$

b
$$\frac{3x^2 - 6x}{2x}$$

a
$$\frac{x^7 + x^4}{x^3}$$
 b $\frac{3x^2 - 6x^5}{2x}$ **c** $\frac{20x^7 + 15x^3}{5x^2}$

a
$$\frac{x^7 + x^4}{x^3} = \frac{x^7}{x^3} + \frac{x^4}{x^3}$$

= $x^{7-3} + x^{4-3} = x^4 + x$

$$b \frac{3x^2 - 6x^5}{2x} = \frac{3x^2}{2x} - \frac{6x^5}{2x}$$

$$= \frac{3}{2}x^{2-1} - 3x^{5-1} = \frac{3x}{2} - 3x^4$$

$$c \frac{20x^7 + 15x^3}{5x^2} = \frac{20x^7}{5x^2} + \frac{15x^3}{5x^2}$$

$$= 4x^{7-2} + 3x^{3-2} = 4x^5 + 3x$$

Divide each term of the numerator by x^3 .

 x^1 is the same as x.

Divide each term of the numerator by 2x.

Simplify each fraction:

$$\frac{3x^2}{2x} = \frac{3}{2} \times \frac{x^2}{x} = \frac{3}{2} \times x^{2-1}$$

$$-\frac{6x^5}{2x} = -\frac{6}{2} \times \frac{x^5}{x} = -3 \times x^{5-1}$$

Divide each term of the numerator by $5x^2$.

Exercise

1 Simplify these expressions:

a
$$x^3 \times x^4$$

d
$$\frac{4p^3}{2}$$

$$\mathbf{d} \ \frac{4p^3}{2p}$$

g
$$10x^5 \div 2x^3$$

$$j \ 8p^4 \div 4p^3$$

$$m 9x^2 \times 3(x^2)^3$$

$$\mathbf{p} \ (4y^3)^3 \div 2y^3$$

b
$$2x^3 \times 3x^2$$

$$e^{\frac{3x^3}{3x^2}}$$

$$3x^2$$

h
$$(p^3)^2 \div p^4$$

$$k \ 2a^4 \times 3a^5$$

n
$$3x^3 \times 2x^2 \times 4x^6$$

q
$$2a^3 \div 3a^2 \times 6a^5$$

$$c \frac{k^3}{k^2}$$

$$c \frac{k^3}{k^2}$$

$$f(y^2)^5$$

i
$$(2a^3)^2 \div 2a^3$$

$$1 \frac{21a^3b^7}{7ab^4}$$

o
$$7a^4 \times (3a^4)^2$$

$$a^{4} \times 2a^{5} \times a^{3}$$

2 Expand and simplify if possible:

a
$$9(x-2)$$

b
$$x(x+9)$$

$$c -3y(4-3y)$$

d
$$x(y + 5)$$

$$e - x(3x + 5)$$

$$f -5x(4x + 1)$$

$$g (4x + 5)x$$

$$h -3v(5-2v^2)$$

$$i -2x(5x-4)$$

$$\mathbf{j} (3x - 5)x^2$$

$$k \ 3(x+2) + (x-7)$$

i
$$-2x(5x-4)$$

1 $5x-6-(3x-2)$

$$m 4(c + 3d^2) - 3(2c + d)$$

$$\mathbf{m} \ 4(c+3d^2) - 3(2c+d^2)$$
 $\mathbf{n} \ (r^2+3t^2+9) - (2r^2+3t^2-4)$

o
$$x(3x^2 - 2x + 5)$$

$$p 7v^2(2-5v+3v^2)$$

o
$$x(3x^2 - 2x + 5)$$
 p $7y^2(2 - 5y + 3y^2)$ **q** $-2y^2(5 - 7y + 3y^2)$

$$r 7(x-2) + 3(x+4) - 6(x-2)$$

$$5x - 3(4 - 2x) + 6$$

$$t 3x^2 - x(3-4x) + 7$$

$$4x(x+3) - 2x(3x-7)$$

t
$$3x^2 - x(3-4x) + 7$$
 u $4x(x+3) - 2x(3x-7)$ v $3x^2(2x+1) - 5x^2(3x-4)$

3 Simplify these fractions:

$$a \frac{6x^4 + 10x^6}{2x}$$

b
$$\frac{3x^5 - x^7}{x}$$

$$\frac{2x^4 - 4x^2}{4x}$$

$$\mathbf{d} \ \frac{8x^3 + 5x}{2x}$$

e
$$\frac{7x^7 + 5x^2}{5x}$$

$$f \frac{9x^5 - 5x^3}{3x}$$

Expanding brackets 1.2

To find the **product** of two expressions you **multiply** each term in one expression by each term in the other expression.

> Multiplying each of the 2 terms in the first expression by each of the 3 terms in the second expression gives $2 \times 3 = 6$ terms.

Example

Expand these expressions and simplify if possible:

a
$$(x+5)(x+2)$$

b
$$(x-2y)(x^2+1)$$

c
$$(x - y)^2$$

b
$$(x-2y)(x^2+1)$$
 c $(x-y)^2$ **d** $(x+y)(3x-2y-4)$

a
$$(x + 5)(x + 2)$$
 = $x^2 + 2x + 5x + 10$
= $x^2 + 7x + 10$
b $(x - 2y)(x^2 + 1)$ = $x^3 + x - 2x^2y - 2y$

Multiply x by (x + 2) and then multiply 5 by (x + 2).

Simplify your answer by collecting like terms.

$$-2y \times x^2 = -2x^2y$$

There are no like terms to collect.

$$c (x - y)^{2}$$

$$= (x - y)(x - y)$$

$$= x^{2} - xy - xy + y^{2}$$

$$= x^{2} - 2xy + y^{2}$$

$$d (x + y)(3x - 2y - 4)$$

$$= x(3x - 2y - 4) + y(3x - 2y - 4)$$

$$= 3x^{2} - 2xy - 4x + 3xy - 2y^{2} - 4y$$

$$= 3x^{2} + xy - 4x - 2y^{2} - 4y$$

 $(x-y)^2$ means (x-y) multiplied by itself.

-xy - xy = -2xy

Multiply x by (3x - 2y - 4) and then multiply y by (3x - 2y - 4).

Example

Expand these expressions and simplify if possible:

a
$$x(2x+3)(x-7)$$

b
$$x(5x-3y)(2x-y+4)$$

c
$$(x-4)(x+3)(x+1)$$

a
$$x(2x + 3)(x - 7)$$

= $(2x^2 + 3x)(x - 7)$
= $2x^3 - 14x^2 + 3x^2 - 21x$
= $2x^3 - 11x^2 - 21x$

Start by expanding one pair of brackets: $x(2x+3) = 2x^2 + 3x$

b x(5x - 3y)(2x - y + 4) $= (5x^2 - 3xy)(2x - y + 4)$ $= 5x^{2}(2x - y + 4) - 3xy(2x - y + 4)$ $= 10x^3 - 5x^2y + 20x^2 - 6x^2y + 3xy^2$ -12xy $= 10x^3 - 11x^2y + 20x^2 + 3xy^2 - 12xy$ You could also have expanded the second pair of brackets first: $(2x + 3)(x - 7) = 2x^2 - 11x - 21$ Then multiply by x.

Be careful with minus signs. You need to change

every sign in the second pair of brackets when

you multiply it out.

c(x-4)(x+3)(x+1)

 $=(x^2-x-12)(x+1)$ $= x^{2}(x + 1) - x(x + 1) - 12(x + 1)$

 $= x^3 + x^2 - x^2 - x - 12x - 12$

 $= x^3 - 13x - 12$

Choose one pair of brackets to expand first, for example:

 $(x-4)(x+3) = x^2 + 3x - 4x - 12$ $= x^2 - x - 12$

You multiplied together three linear terms, so the final answer contains an x^3 term.

Exercise 1B

1 Expand and simplify if possible:

a
$$(x+4)(x+7)$$

b
$$(x-3)(x+2)$$

c
$$(x-2)^2$$

d
$$(x-y)(2x+3)$$

e
$$(x + 3y)(4x - y)$$

$$\mathbf{f} (2x - 4y)(3x + y)$$

g
$$(2x-3)(x-4)$$

h
$$(3x + 2y)^2$$

i
$$(2x + 8y)(2x + 3)$$

$$\mathbf{j} \ (x+5)(2x+3y-5)$$

$$k(x-1)(3x-4y-5)$$

k
$$(x-1)(3x-4y-5)$$
 1 $(x-4y)(2x+y+5)$
n $(2x+2y+3)(x+6)$ **o** $(4-y)(4y-x+3)$

$$m(x+2y-1)(x+3)$$

$$\mathbf{n} (2x + 2y + 3)(x + 6)$$

o
$$(4-y)(4y-x+3)$$

$$\mathbf{p} (4y+5)(3x-y+2)$$

q
$$(5y-2x+3)(x-4)$$
 r $(4y-x-2)(5-y)$

$$\mathbf{r} = (4y - x - 2)(5 - y)$$

2 Expand and simplify if possible:

a
$$5(x+1)(x-4)$$

b
$$7(x-2)(2x+5)$$
 c $3(x-3)(x-3)$

c
$$3(x-3)(x-3)$$

d
$$x(x-y)(x+y)$$

e
$$x(2x+y)(3x+4)$$
 f $y(x-5)(x+1)$

f
$$y(x-5)(x+1)$$

$$y(3x-2y)(4x+2)$$

h
$$y(7-x)(2x-5)$$

h
$$y(7-x)(2x-5)$$
 i $x(2x+y)(5x-2)$

$$\mathbf{j} \quad x(x+2)(x+3y-4)$$

$$\mathbf{k} \ y(2x+y-1)(x+5)$$

k
$$y(2x+y-1)(x+5)$$
 1 $y(3x+2y-3)(2x+1)$

$$\mathbf{m} \ x(2x+3)(x+y-5)$$

$$2x(3x-1)(4x-y-3)$$

$$1 \quad y(3x + 2y - 3)(2x + 1)$$

$$p(x+3)(x+2)(x+1)$$

n
$$2x(3x-1)(4x-y-3)$$
 o $3x(x-2y)(2x+3y+5)$

$$\mathbf{p} (x+3)(x+2)(x+1)$$

$$q(x+2)(x-4)(x+3)$$
 $r(x+3)(x-1)(x-5)$

$$r (r + 3)(r - 1)(r - 5)$$

s
$$(x-5)(x-4)(x-3)$$

$$\mathbf{s} \quad (x-5)(x-4)(x-3)$$

$$\mathbf{t} \quad (2x+1)(x-2)(x+1)$$

$$u (2x+3)(3x-1)(x+2)$$

v
$$(3x-2)(2x+1)(3x-2)$$
 w $(x+y)(x-y)(x-1)$

$$(2x + 1)(x - 2)(x + 1)$$

$$\mathbf{x} (2x - 3v)^3$$

(P) 3 The diagram shows a rectangle with a square cut out. The rectangle has length 3x - y + 4 and width x + 7. The square has length x - 2.

Find an expanded and simplified expression for the shaded area.

Problem-solving

Use the same strategy as you would use if the lengths were given as numbers:

- 4 A cuboid has dimensions x + 2 cm, 2x 1 cm and 2x + 3 cm. Show that the volume of the cuboid is $4x^3 + 12x^2 + 5x - 6$ cm³.
- **E/P)** 5 Given that $(2x + 5y)(3x y)(2x + y) = ax^3 + bx^2y + cxy^2 + dy^3$, where a, b, c and d are constants, find the values of a, b, c and d. (2 marks)

Challenge

Expand and simplify $(x + y)^4$.

You can use the binomial expansion to expand expressions like $(x + y)^4$ quickly. → Section 8.3

Factorising

You can write expressions as a product of their factors.

Factorising is the opposite of expanding brackets.

Expanding bracket

$$4x(2x + y) = 8x^{2} + 4xy$$
$$(x + 5)^{3} = x^{3} + 15x^{2} + 75x + 125$$
$$(x + 2y)(x - 5y) = x^{2} - 3xy - 10y^{2}$$

Factorise these expressions completely:

a
$$3x + 9$$

b
$$x^2 - 5x$$

c
$$8x^2 + 20x$$

d
$$9x^2y + 15xy^2$$
 e $3x^2 - 9xy$

e
$$3x^2 - 9xy$$

$$a 3x + 9 = 3(x + 3)$$

b
$$x^2 - 5x = x(x - 5)$$

$$c 8x^2 + 20x = 4x(2x + 5)$$

$$d 9x^2y + 15xy^2 = 3xy(3x + 5y) -$$

$$e \ 3x^2 - 9xy = 3x(x - 3y)$$

3 is a common factor of 3x and 9.

x is a common factor of x^2 and -5x.

4 and x are common factors of $8x^2$ and 20x. So take 4x outside the brackets.

3, x and y are common factors of $9x^2y$ and $15xy^2$. So take 3xy outside the brackets.

x and -3y have no common factors so this expression is completely factorised.

A quadratic expression has the form $ax^2 + bx + c$ where a, b and c are real numbers and $a \neq 0$.

To factorise a quadratic expression:

• Find two factors of ac that add up to b -

• Rewrite the b term as a sum of these two $2x^2 - x + 6x - 3$ factors

Factorise each pair of terms

Take out the common factor —

Notation) Real numbers are all the positive and negative numbers, or zero, including fractions and surds.

For the expression $2x^2 + 5x - 3$, $ac = -6 = -1 \times 6$ and -1 + 6 = 5 = b.

$$2x^2 - x + 6x - 3$$

= x(2x-1) + 3(2x-1)

$$=(x+3)(2x-1)$$

 $x^2 - y^2 = (x + y)(x - y)$

Notation An expression in the form $x^2 - y^2$ is called the difference of two squares.

Example

a
$$x^2 - 5x - 6$$

b
$$x^2 + 6x + 8$$

c
$$6x^2 - 11x - 10$$
 d $x^2 - 25$ **e** $4x^2 - 9y^2$

d
$$x^2 - 25$$

$$e^{4x^2-9v^2}$$

a
$$x^2 - 5x - 6$$

 $ac = -6$ and $b = -5$
 $5o x^2 - 5x - 6 = x^2 + x - 6x - 6$
 $= x(x + 1) - 6(x + 1)$
 $= (x + 1)(x - 6)$

Here a = 1, b = -5 and c = -6.

- 1) Work out the two factors of ac = -6 which add to give you b = -5. -6 + 1 = -5
- (2) Rewrite the b term using these two factors.
- (3) Factorise first two terms and last two terms.
- (4) x + 1 is a factor of both terms, so take that outside the brackets. This is now completely factorised.

 $b x^2 + 6x + 8$

 $= x^2 + 2x + 4x + 8$

= x(x + 2) + 4(x + 2)

=(x + 2)(x + 4)

 $c 6x^2 - 11x - 10$

 $= 6x^2 - 15x + 4x - 10$

= 3x(2x - 5) + 2(2x - 5)

=(2x-5)(3x+2)

 $d x^2 - 25$

 $= x^2 - 5^2$

=(x+5)(x-5)

 $e 4x^2 - 9y^2$ -

 $= 2^2x^2 - 3^2y^2$

=(2x + 3y)(2x - 3y)

ac = 8 and 2 + 4 = 6 = h.

Factorise.

ac = -60 and 4 - 15 = -11 = b.

Factorise.

This is the difference of two squares as the two terms are x^2 and 5^2 .

The two x terms, 5x and -5x, cancel each other out.

This is the same as $(2x)^2 - (3y)^2$.

Example

Factorise completely:

a $x^3 - 2x^2$ **b** $x^3 - 25x$ **c** $x^3 + 3x^2 - 10x$

a $x^3 - 2x^2 = x^2(x - 2)$

 $b x^3 - 25x = x(x^2 - 25)$ $= x(x^2 - 5^2)$

= x(x + 5)(x - 5)

 $c x^3 + 3x^2 - 10x = x(x^2 + 3x - 10)$

= x(x + 5)(x - 2)

You can't factorise this any further.

x is a common factor of x^3 and -25x. So take x outside the brackets.

 $x^2 - 25$ is the difference of two squares.

Write the expression as a product of x and a quadratic factor.

Factorise the quadratic to get three linear factors.

1 Factorise these expressions completely:

a 4x + 8

Exercise

d $2x^2 + 4$

g $x^2 - 7x$

 $\mathbf{j} = 6x^2 - 2x$

 $m x^2 + 2x$

p $5v^2 - 20v$

s $5x^2 - 25xy$

 $v 12x^2 - 30$

b 6x - 24

 $e 4x^2 + 20$

h $2x^2 + 4x$

 $k 10v^2 - 5v$

n $3y^2 + 2y$

 $q 9xy^2 + 12x^2y$

 $t 12x^2y + 8xy^2$

 $\mathbf{w} xy^2 - x^2y$

c 20x + 15

f $6x^2 - 18x$

i $3x^2 - x$

1 $35x^2 - 28x$

o $4x^2 + 12x$

 $\mathbf{r} = 6ab - 2ab^2$

u $15y - 20yz^2$

 $x 12y^2 - 4yx$

2 Factorise:

a
$$x^2 + 4x$$

d
$$x^2 + 8x + 12$$

$$\mathbf{g} \ x^2 + 5x + 6$$

$$\mathbf{j} \quad x^2 + x - 20$$

$$\mathbf{m} \ 5x^2 - 16x + 3$$

o
$$2x^2 + 7x - 15$$

$$q x^2 - 4$$

$$4x^2 - 25$$

$$v 2x^2 - 50$$

r
$$x^2 - 49$$

t $9x^2 - 25y^2$

b $2x^2 + 6x$

e $x^2 + 3x - 40$

h $x^2 - 2x - 24$

 $k 2x^2 + 5x + 2$

 $n 6x^2 - 8x - 8$

 $\mathbf{p} \ 2x^4 + 14x^2 + 24$

$$\mathbf{w} 6x^2 - 10x + 4$$

a
$$x^3 + 2x$$

d
$$x^3 - 9x$$

$$\mathbf{g} \ x^3 - 7x^2 + 6x$$

$$2x^3 + 13x^2 + 15x$$

b
$$x^3 - x^2 + x$$

e
$$x^3 - x^2 - 12x$$

h
$$x^3 - 64x$$

$$k x^3 - 4x$$

$$x^2 + 11x + 24$$

$$\mathbf{f} \quad x^2 - 8x + 12$$

i
$$x^2 - 3x - 10$$

$$1 3x^2 + 10x - 8$$

Hint For part **n**, take 2 out as a common factor first. For part **p**, let $y = x^2$.

u
$$36x^2 - 4$$

$$\mathbf{x} = 15x^2 + 42x - 9$$

c
$$x^3 - 5x$$

$$\mathbf{f} \quad x^3 + 11x^2 + 30x$$

i
$$2x^3 - 5x^2 - 3x$$

$$1 3x^3 + 27x^2 + 60x$$

(P) 4 Factorise completely $x^4 - y^4$.

(2 marks)

Problem-solving

Watch out for terms that can be written as a function of a function: $x^4 = (x^2)^2$

(E) 5 Factorise completely $6x^3 + 7x^2 - 5x$.

(2 marks)

Challenge

Write $4x^4 - 13x^2 + 9$ as the product of four linear factors.

Negative and fractional indices

Indices can be negative numbers or fractions.

$$x^{\frac{1}{2}} \times x^{\frac{1}{2}} = x^{\frac{1}{2} + \frac{1}{2}} = x^{1} = x$$

similarly
$$x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times \dots \times x^{\frac{1}{n}} = x^{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}} = x^1 = x$$

n terms

You can use the laws of indices with any rational power.

•
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

•
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

•
$$a^{-m} = \frac{1}{a^m}$$

•
$$a^0 = 1$$

Notation Rational

numbers are those that can be written as $\frac{a}{b}$ where a and b are integers.

Notation $a^{\frac{1}{2}} = \sqrt{a}$ is the positive square root of a. For example $9^{\frac{1}{2}} = \sqrt{9} = 3$ but $9^{\frac{1}{2}} \neq -3$.

Simplify:

a
$$\frac{x^3}{x^{-3}}$$

b
$$x^{\frac{1}{2}} \times x^{\frac{3}{2}}$$

c
$$(x^3)^{\frac{2}{3}}$$

d
$$2x^{1.5} \div 4x^{-0.25}$$

e
$$\sqrt[3]{125x^6}$$

b
$$x^{\frac{1}{2}} \times x^{\frac{3}{2}}$$
 c $(x^3)^{\frac{2}{3}}$ **d** $2x^{1.5} \div 4x^{-0.25}$ **e** $\sqrt[3]{125x^6}$ **f** $\frac{2x^2 - x}{x^5}$

a
$$\frac{x^3}{x^{-3}} = x^{3-(-3)} = x^6$$

b $x^{\frac{1}{2}} \times x^{\frac{3}{2}} = x^{\frac{1}{2} + \frac{3}{2}} = x^2$

d
$$2x^{1.5} \div 4x^{-0.25} = \frac{1}{2}x^{1.5 - (-0.25)} = \frac{1}{2}x^{1.75}$$

$$e^{\sqrt[3]{125x^6}} = (125x^6)^{\frac{1}{3}} = (125x^6)^{\frac{1}{3}} = (125)^{\frac{1}{3}}(x^6)^{\frac{1}{3}} = \sqrt[3]{125}(x^6 \times \frac{1}{3}) = 5x^2$$

$$f^{\frac{2x^2 - x}{x^5}} = \frac{2x^2}{x^5} - \frac{x}{x^5}$$

$$= 2 \times x^{2-5} - x^{1-5} = 2x^{-3} - x^{-4}$$

 $=\frac{2}{x^3}-\frac{1}{x^4}$

Use the rule
$$a^m \div a^n = a^{m-n}$$
.

This could also be written as
$$\sqrt{x}$$
.
Use the rule $a^m \times a^n = a^{m+n}$.

Use the rule
$$(a^m)^n = a^{mn}$$
.

Use the rule
$$a^m \div a^n = a^{m-n}$$
.
1.5 - (-0.25) = 1.75

Using
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$
.

Divide each term of the numerator by
$$x^5$$
.

Using
$$a^{-m} = \frac{1}{a^m}$$

Example

Evaluate:

- a $9^{\frac{1}{2}}$
- **b** $64^{\frac{1}{3}}$
- c $49^{\frac{3}{2}}$
- d $25^{-\frac{3}{2}}$

a
$$9^{\frac{1}{2}} = \sqrt{9} = 3$$

b
$$64^{\frac{1}{3}} = \sqrt[3]{64} = 4$$

$$c \ 49^{\frac{3}{2}} = (\sqrt{49})^3 -$$

$$7^3 = 343$$

d
$$25^{-\frac{3}{2}} = \frac{1}{25^{\frac{3}{2}}} = \frac{1}{(\sqrt{25})^3}$$

$$=\frac{1}{5^3}=\frac{1}{125}$$

Using
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$
. $9^{\frac{1}{2}} = \sqrt{9}$

Using
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$
.

Using
$$a^{-m} = \frac{1}{a^m}$$

Online Use your calculator to enter negative and fractional powers.

Given that $y = \frac{1}{16}x^2$ express each of the following in the form kx^n , where k and n are constants.

a
$$y^{\frac{1}{2}}$$

b
$$4y^{-1}$$

a
$$y^{\frac{1}{2}} = \left(\frac{1}{16}x^2\right)^{\frac{1}{2}}$$

 $= \frac{1}{\sqrt{16}}x^2 \times \frac{1}{2} = \frac{x}{4}$
b $4y^{-1} = 4\left(\frac{1}{16}x^2\right)^{-1}$
 $= 4\left(\frac{1}{16}\right)^{-1}x^2 \times (-1) = 4 \times 16x^{-2}$
 $= 64x^{-2}$

Substitute
$$y = \frac{1}{16}x^2$$
 into $y^{\frac{1}{2}}$.

$$\left(\frac{1}{16}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{16}}$$
 and $(x^2)^{\frac{1}{2}} = x^{2 \times \frac{1}{2}}$

$$\left(\frac{1}{16}\right)^{-1} = 16 \text{ and } x^{2 \times -1} = x^{-2}$$

Problem-solving

Check that your answers are in the correct form. If k and n are constants they could be positive or negative, and they could be integers, fractions or surds.

Exercise 1D

1 Simplify:

a
$$x^3 \div x^{-2}$$

b
$$x^5 \div x^7$$

c
$$x^{\frac{3}{2}} \times x^{\frac{5}{2}}$$

d
$$(x^2)^{\frac{3}{2}}$$

e
$$(x^3)^{\frac{5}{3}}$$

f
$$3x^{0.5} \times 4x^{-0.5}$$

$$\mathbf{g} \ 9x^{\frac{2}{3}} \div 3x^{\frac{1}{6}}$$

h
$$5x^{\frac{7}{5}} \div x^{\frac{2}{5}}$$

i
$$3x^4 \times 2x^{-5}$$

$$\int \sqrt{x} \times \sqrt[3]{x}$$

$$\mathbf{k} \ (\sqrt{x})^3 \times (\sqrt[3]{x})^4$$

$$1 \quad \frac{(\sqrt[3]{x})^2}{\sqrt{x}}$$

2 Evaluate:

a
$$25^{\frac{1}{2}}$$

b
$$81^{\frac{3}{2}}$$

c
$$27^{\frac{1}{3}}$$

$$d 4^{-2}$$

e
$$9^{-\frac{1}{2}}$$

$$\mathbf{f} (-5)^{-3}$$

$$\mathbf{g} \left(\frac{3}{4}\right)^0$$

h
$$1296^{\frac{3}{4}}$$

$$i \quad \left(\frac{25}{16}\right)^{\frac{3}{2}}$$

$$\int_{8}^{1} \left(\frac{27}{8}\right)^{\frac{2}{3}}$$

$$k \left(\frac{6}{5}\right)^{-1}$$

$$\left(\frac{343}{512}\right)^{-\frac{2}{3}}$$

3 Simplify:

a
$$(64x^{10})^{\frac{1}{2}}$$

b
$$\frac{5x^3-2x^2}{x^5}$$

c
$$(125x^{12})^{\frac{1}{3}}$$

d
$$\frac{x + 4x^3}{x^3}$$

$$e^{\frac{2x+x^2}{x^4}}$$

$$f \left(\frac{4}{9}x^4\right)^{\frac{3}{2}}$$

$$g \frac{9x^2-15x^5}{3x^3}$$

h
$$\frac{5x + 3x^2}{15x^3}$$

(E) 4 a Find the value of $81^{\frac{1}{4}}$.

(1 mark)

b Simplify $x(2x^{-\frac{1}{3}})^4$.

(2 marks)

(E) 5 Given that $y = \frac{1}{8}x^3$ express each of the following in the form kx^n , where k and n are constants.

$$\mathbf{a} \quad \mathbf{y}^{\frac{1}{3}} \tag{2 marks}$$

b
$$\frac{1}{2}y^{-2}$$

(2 marks)

Surds 1.5

If n is an integer that is **not** a square number, then any multiple of \sqrt{n} is called a surd. Examples of surds are $\sqrt{2}$, $\sqrt{19}$ and $5\sqrt{2}$.

Surds are examples of irrational numbers. The decimal expansion of a surd is never-ending and never repeats, for example $\sqrt{2} = 1.414213562...$ Notation Irrational numbers cannot be written in the form $\frac{a}{b}$ where a and b are integers. Surds are examples of irrational numbers.

You can use surds to write exact answers to calculations.

You can manipulate surds using these rules:

- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$

Example

Simplify:

a $\sqrt{12}$

b $\frac{\sqrt{20}}{2}$

c $5\sqrt{6} - 2\sqrt{24} + \sqrt{294}$

a
$$\sqrt{12} = \sqrt{(4 \times 3)}$$
 Look:
 $= \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ Use the set of the set

Look for a factor of 12 that is a square number. Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$, $\sqrt{4} = 2$

$$\sqrt{20} = \sqrt{4} \times \sqrt{5}$$

$$\sqrt{4} = 2$$

Cancel by 2.

 $\sqrt{6}$ is a common factor.

Work out the square roots $\sqrt{4}$ and $\sqrt{49}$.

$$5 - 4 + 7 = 8$$

Example (13)

Expand and simplify if possible:

a
$$\sqrt{2}(5-\sqrt{3})$$

b
$$(2-\sqrt{3})(5+\sqrt{3})$$

a
$$\sqrt{2}(5-\sqrt{3})$$
 $\sqrt{2}\times 5-\sqrt{2}\times \sqrt{3}$
= $5\sqrt{2}-\sqrt{6}$ Using $\sqrt{a}\times\sqrt{b}=\sqrt{ab}$
b $(2-\sqrt{3})(5+\sqrt{3})$ Expand the brackets completely before you simplify.
= $2(5+\sqrt{3})-\sqrt{3}(5+\sqrt{3})$ Collect like terms: $2\sqrt{3}-5\sqrt{3}=-3\sqrt{3}$
= $7-3\sqrt{3}$ Simplify any roots if possible: $\sqrt{9}=3$

Exercise 1E

1 Do not use your calculator for this exercise. Simplify:

b
$$\sqrt{72}$$

d
$$\sqrt{32}$$

$$f \frac{\sqrt{12}}{2}$$

$$\mathbf{g} \frac{\sqrt{27}}{3}$$

h
$$\sqrt{20} + \sqrt{80}$$

i
$$\sqrt{200} + \sqrt{18} - \sqrt{72}$$

$$\mathbf{j} = \sqrt{175} + \sqrt{63} + 2\sqrt{28}$$

$$k \sqrt{28} - 2\sqrt{63} + \sqrt{7}$$

$$\mathbf{k} \sqrt{28} - 2\sqrt{63} + \sqrt{7}$$
 $\mathbf{l} \sqrt{80} - 2\sqrt{20} + 3\sqrt{45}$

$$\mathbf{m} \ 3\sqrt{80} - 2\sqrt{20} + 5\sqrt{45}$$

$$n \frac{\sqrt{44}}{\sqrt{11}}$$

o
$$\sqrt{12} + 3\sqrt{48} + \sqrt{75}$$

2 Expand and simplify if possible:

a
$$\sqrt{3}(2+\sqrt{3})$$

b
$$\sqrt{5}(3-\sqrt{3})$$

c
$$\sqrt{2}(4-\sqrt{5})$$

d
$$(2-\sqrt{2})(3+\sqrt{5})$$

e
$$(2-\sqrt{3})(3-\sqrt{7})$$

$$\begin{array}{lll} \textbf{a} & \sqrt{3}(2+\sqrt{3}) & \textbf{b} & \sqrt{5}(3-\sqrt{3}) & \textbf{c} & \sqrt{2}(4-\sqrt{5}) \\ \textbf{d} & (2-\sqrt{2})(3+\sqrt{5}) & \textbf{e} & (2-\sqrt{3})(3-\sqrt{7}) & \textbf{f} & (4+\sqrt{5})(2+\sqrt{5}) \end{array}$$

$$g (5-\sqrt{3})(1-\sqrt{3})$$

h
$$(4+\sqrt{3})(2-\sqrt{3})$$
 i $(7-\sqrt{11})(2+\sqrt{11})$

i
$$(7 - \sqrt{11})(2 + \sqrt{11})$$

(E) 3 Simplify $\sqrt{75} - \sqrt{12}$ giving your answer in the form $a\sqrt{3}$, where a is an integer. (2 marks)

Rationalising denominators 1.6

If a fraction has a surd in the denominator, it is sometimes useful to rearrange it so that the denominator is a rational number. This is called rationalising the denominator.

- The rules to rationalise denominators are:
 - For fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a} .
 - For fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numerator and denominator by $a-\sqrt{b}$.
 - For fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numerator and denominator by $a+\sqrt{b}$.

Rationalise the denominator of:

a
$$\frac{1}{\sqrt{3}}$$

b
$$\frac{1}{3+\sqrt{2}}$$

$$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

d
$$\frac{1}{(1-\sqrt{3})^2}$$

$$a \frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$$

$$= \frac{\sqrt{3}}{3}$$

$$\sqrt{3} \times \sqrt{3} = (\sqrt{3})^2 = 3$$

$$b \frac{1}{3+\sqrt{2}} = \frac{1 \times (3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$$

$$= \frac{3-\sqrt{2}}{9-3\sqrt{2}+3\sqrt{2}-2}$$

$$= \frac{3-\sqrt{2}}{7}$$

Multiply numerator and denominator by
$$(3 - \sqrt{2})$$
.

Multiply numerator and denominator by $\sqrt{5} + \sqrt{2}$.

Multiply the numerator and denominator by $\sqrt{3}$.

$$c \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{(\sqrt{5} + \sqrt{2})(\sqrt{5} + \sqrt{2})}{(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})}$$

$$5 + \sqrt{5}\sqrt{2} + \sqrt{2}\sqrt{5} + 2$$

$$9-2=7, -3\sqrt{2}+3\sqrt{2}=0$$

 $= \frac{5 + \sqrt{5}\sqrt{2} + \sqrt{2}\sqrt{5} + 2}{5 - 2}$ $=\frac{7+2\sqrt{10}}{3}$

 $-\sqrt{2}\sqrt{5}$ and $\sqrt{5}\sqrt{2}$ cancel each other out.

$$\sqrt{5}\sqrt{2} = \sqrt{10}$$

 $\sqrt{2} \times \sqrt{2} = 2$

 $=\frac{4+2\sqrt{3}}{4}=\frac{2+\sqrt{3}}{2}$

Simplify and collect like terms. $\sqrt{9} = 3$

Multiply the numerator and denominator by $4 + 2\sqrt{3}$.

$$\sqrt{3} \times \sqrt{3} = 3$$

$$-16 - 12 = 4, 8\sqrt{3} - 8\sqrt{3} = 0$$

Exercise 1F

1 Simplify:

a
$$\frac{1}{\sqrt{5}}$$

b
$$\frac{1}{\sqrt{11}}$$

$$c \frac{1}{\sqrt{2}}$$

d
$$\frac{\sqrt{3}}{\sqrt{15}}$$

$$e^{-\sqrt{12}}$$

$$\mathbf{f} \ \frac{\sqrt{5}}{\sqrt{80}}$$

f
$$\frac{\sqrt{5}}{\sqrt{80}}$$
 g $\frac{\sqrt{12}}{\sqrt{156}}$

h
$$\frac{\sqrt{7}}{\sqrt{63}}$$

2 Rationalise the denominators and simplify:

$$\mathbf{a} \ \frac{1}{1+\sqrt{3}}$$

a
$$\frac{1}{1+\sqrt{3}}$$
 b $\frac{1}{2+\sqrt{5}}$ **c** $\frac{1}{3-\sqrt{7}}$

c
$$\frac{1}{3-\sqrt{7}}$$

d
$$\frac{4}{3-\sqrt{5}}$$

d
$$\frac{4}{3-\sqrt{5}}$$
 e $\frac{1}{\sqrt{5}-\sqrt{3}}$

$$\mathbf{f} \quad \frac{3 - \sqrt{2}}{4 - \sqrt{5}}$$

$$\mathbf{g} \ \frac{5}{2+\sqrt{5}}$$

$$h \ \frac{5\sqrt{2}}{\sqrt{8} - \sqrt{7}}$$

i
$$\frac{11}{3 + \sqrt{11}}$$

f
$$\frac{3-\sqrt{2}}{4-\sqrt{5}}$$
 g $\frac{5}{2+\sqrt{5}}$ **h** $\frac{5\sqrt{2}}{\sqrt{8}-\sqrt{7}}$ **i** $\frac{11}{3+\sqrt{11}}$ **j** $\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}$

$$k \frac{\sqrt{17} - \sqrt{11}}{\sqrt{17} + \sqrt{11}}$$

$$\ \, \mathbf{k} \ \, \frac{\sqrt{17} - \sqrt{11}}{\sqrt{17} + \sqrt{11}} \qquad \qquad \mathbf{l} \ \, \frac{\sqrt{41} + \sqrt{29}}{\sqrt{41} - \sqrt{29}} \qquad \quad \mathbf{m} \, \frac{\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}}$$

$$\mathbf{m} \ \frac{\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}}$$

3 Rationalise the denominators and simplify:

a
$$\frac{1}{(3-\sqrt{2})^2}$$

b
$$\frac{1}{(2+\sqrt{5})^2}$$

$$c \frac{4}{(3-\sqrt{2})^2}$$

d
$$\frac{3}{(5+\sqrt{2})^2}$$

e
$$\frac{1}{(5+\sqrt{2})(3-\sqrt{2})}$$

e
$$\frac{1}{(5+\sqrt{2})(3-\sqrt{2})}$$
 f $\frac{2}{(5-\sqrt{3})(2+\sqrt{3})}$

(E/P) 4 Simplify $\frac{3-2\sqrt{5}}{\sqrt{5}-1}$ giving your answer in the

form $p + q\sqrt{5}$, where p and q are rational numbers. (4 marks)

Problem-solving

You can check that your answer is in the correct form by writing down the values of p and q and checking that they are rational numbers.

Mixed exercise

1 Simplify:

$$\mathbf{a} \quad y^3 \times y^5$$

b
$$3x^2 \times 2x^5$$

b
$$3x^2 \times 2x^5$$
 c $(4x^2)^3 \div 2x^5$

d
$$4b^2 \times 3b^3 \times b^4$$

2 Expand and simplify if possible:

a
$$(x+3)(x-5)$$

b
$$(2x-7)(3x+1)$$

b
$$(2x-7)(3x+1)$$
 c $(2x+5)(3x-y+2)$

3 Expand and simplify if possible:

a
$$x(x+4)(x-1)$$

b
$$(x+2)(x-3)(x+7)$$

b
$$(x+2)(x-3)(x+7)$$
 c $(2x+3)(x-2)(3x-1)$

4 Expand the brackets:

a
$$3(5y + 4)$$

b
$$5x^2(3-5x+2x^2)$$

c
$$5x(2x+3) - 2x(1-3x)$$

a
$$3(5y + 4)$$
 b $5x^2(3 - 5x + 2x^2)$ **c** $5x(2x + 3) - 2x(1 - 3x)$ **d** $3x^2(1 + 3x) - 2x(3x - 2)$

_		. 1			ē	i
5	Hactorice	thece	expressions	comn	ata	T7.

a
$$3x^2 + 4x$$

b
$$4v^2 + 10v$$

b
$$4y^2 + 10y$$
 c $x^2 + xy + xy^2$ **d** $8xy^2 + 10x^2y$

d
$$8xv^2 + 10x^2$$

Factorise:

$$a x^2 + 3x + 2$$

b
$$3x^2 + 6x$$

a
$$x^2 + 3x + 2$$
 b $3x^2 + 6x$ **c** $x^2 - 2x - 35$

d
$$2x^2 - x - 3$$

e
$$5x^2 - 13x - 6$$
 f $6 - 5x - x^2$

$$6 - 5x - x^2$$

Factorise:

a
$$2x^3 + 6x$$

b
$$x^3 - 36x$$

c
$$2x^3 + 7x^2 - 15x$$

Simplify:

a
$$9x^3 \div 3x^{-3}$$

b
$$(4^{\frac{3}{2}})^{\frac{1}{3}}$$

c
$$3x^{-2} \times 2x^4$$

d
$$3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$$

Evaluate:

$$a \left(\frac{8}{27}\right)^{\frac{2}{3}}$$

b
$$\left(\frac{225}{289}\right)^{\frac{3}{2}}$$

10 Simplify:

a
$$\frac{3}{\sqrt{63}}$$

b
$$\sqrt{20} + 2\sqrt{45} - \sqrt{80}$$

11 a Find the value of
$$35x^2 + 2x - 48$$
 when $x = 25$.

b By factorising the expression, show that your answer to part a can be written as the product of two prime factors.

12 Expand and simplify if possible:

a
$$\sqrt{2}(3+\sqrt{5})$$

b
$$(2-\sqrt{5})(5+\sqrt{3})$$
 c $(6-\sqrt{2})(4-\sqrt{7})$

c
$$(6-\sqrt{2})(4-\sqrt{7})$$

13 Rationalise the denominator and simplify:

a
$$\frac{1}{\sqrt{3}}$$

b
$$\frac{1}{\sqrt{2}-1}$$

$$c \frac{3}{\sqrt{3}-2}$$

a
$$\frac{1}{\sqrt{3}}$$
 b $\frac{1}{\sqrt{2}-1}$ **c** $\frac{3}{\sqrt{3}-2}$ **d** $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$ **e** $\frac{1}{(2+\sqrt{3})^2}$ **f** $\frac{1}{(4-\sqrt{7})^2}$

$$e^{\frac{1}{(2+\sqrt{3})^2}}$$

$$f = \frac{1}{(4-\sqrt{7})^2}$$

14 a Given that
$$x^3 - x^2 - 17x - 15 = (x + 3)(x^2 + bx + c)$$
, where b and c are constants, work out the values of b and c.

b Hence, fully factorise
$$x^3 - x^2 - 17x - 15$$
.

15 Given that $y = \frac{1}{64}x^3$ express each of the following in the form kx^n , where k and n are constants.

a
$$y^{\frac{1}{3}}$$

(1 mark)

b
$$4v^{-1}$$

(1 mark)

E/P 16 Show that
$$\frac{5}{\sqrt{75} - \sqrt{50}}$$
 can be written in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers. (5 marks)

E 17 Expand and simplify
$$(\sqrt{11} - 5)(5 - \sqrt{11})$$
.

(2 marks)

E 18 Factorise completely
$$x - 64x^3$$
.

(3 marks)

19 Express
$$27^{2x+1}$$
 in the form 3^y , stating y in terms of x.

(2 marks)

20 Solve the equation $8 + x\sqrt{12} = \frac{8x}{\sqrt{3}}$

Give your answer in the form $a\sqrt{b}$ where a and b are integers.

(4 marks)

- (P) 21 A rectangle has a length of $(1+\sqrt{3})$ cm and area of $\sqrt{12}$ cm². Calculate the width of the rectangle in cm. Express your answer in the form $a + b\sqrt{3}$, where a and b are integers to be found.
- 22 Show that $\frac{(2-\sqrt{x})^2}{\sqrt{x}}$ can be written as $4x^{-\frac{1}{2}} 4 + x^{\frac{1}{2}}$.

(2 marks)

- (E/P) 23 Given that $243\sqrt{3} = 3^a$, find the value of a.

(3 marks)

- 24 Given that $\frac{4x^3 + x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4x^a + x^b$, write down the value of a and the value of b.

(2 marks)

Challenge

- a Simplify $(\sqrt{a} + \sqrt{b})(\sqrt{a} \sqrt{b})$.
- **b** Hence show that $\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{24} + \sqrt{25}} = 4$

Summary of key points

1 You can use the laws of indices to simplify powers of the same base.

$$\bullet \ a^m \times a^n = a^{m+n}$$

$$\bullet \ a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{mn}$$

$$(ab)^n = a^n b^n$$

- 2 Factorising is the opposite of expanding brackets.
- **3** A quadratic expression has the form $ax^2 + bx + c$ where a, b and c are real numbers and $a \ne 0$.

4
$$x^2 - y^2 = (x + y)(x - y)$$

5 You can use the laws of indices with any rational power.

$$\bullet \ a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

$$\bullet \ a^{-m} = \frac{1}{a^m}$$

•
$$a^0 = 1$$

6 You can manipulate surds using these rules:

$$\bullet \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- 7 The rules to rationalise denominators are:
 - Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a} .
 - Fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numerator and denominator by $a-\sqrt{b}$.
 - Fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numerator and denominator by $a+\sqrt{b}$.

Quadratics

Objectives

After completing this chapter you should be able to:

- Solve quadratic equations using factorisation, the quadratic formula and completing the square → pages 19 24
- Read and use f(x) notation when working with functions \rightarrow pages 25 27
- Sketch the graph and find the turning point of a quadratic function
 → pages 27 30
- Find and interpret the discriminant of a quadratic expression
 → pages 30 32
- Use and apply models that involve quadratic functions → pages 32 35

Prior knowledge check

1 Solve the following equations:

a
$$3x + 6 = x - 4$$

b
$$5(x+3) = 6(2x-1)$$

c
$$4x^2 = 100$$

d
$$(x-8)^2=64$$

← GCSE Mathematics

2 Factorise the following expressions:

a
$$x^2 + 8x + 15$$

b
$$x^2 + 3x - 10$$

c
$$3x^2 - 14x - 5$$

d
$$x^2 - 400$$

← Section 1.3

3 Sketch the graphs of the following equations, labelling the points where each graph crosses the axes:

a
$$y = 3x - 6$$

b
$$y = 10 - 2x$$

$$x + 2y = 18$$

d
$$v = x^2$$

← GCSE Mathematics

4 Solve the following inequalities:

a
$$x + 8 < 11$$

b
$$2x - 5 \ge 13$$

c
$$4x - 7 \le 2(x - 1)$$

d
$$4 - x < 11$$

← GCSE Mathematics

